
VT-roff: a Terminal for the 21st Century

ABSTRACT

Reports of the demise of VT-100 are much exaggerated. It lives on (and on) in
software, hampering innovation, productivity, and progress wherever it goes. Long after
the machine itself and its wondrous and weird supporting cast have departed the scene, its
weird features remain: unused, mostly useless, and frequently baffling.

The zombie life of the VT-100 wouldn’t matter but for one fact: the long promised
GUI environment that would make it obsolete, the flying car of the 1980s, never arrived.
Research into better command-line interfaces, to the extent it ever existed, ceased when
ev eryone “knew” it would be replaced by the so-easy-to-use GUI. Yet in 2013, the
35-year old VT-100 still sets the standard, and in emulation remains the tool of choice for
millions of computing professionals every day.

Herein described is a graphical terminal that affords a very different kind of com-
mand-line experience. It subsumes some common features of command-line interaction
and breaks free of the character-cell metaphor defined by the VT-100. It bypasses much
of the unneeded OS support for nonexistent serial ports and modems, incorporates basic,
necessary features currently provided by the “host”, and supports graphics equal to any
printer or web browser in the terminal, not as adjunct programs.

Moreover, it is not a moonshot: it leverages existing technology, troff, in a new way.
For a small noncommercial investment, it could improve the daily lives of millions of
people, and possibly point a new way forward for human interaction with the computer.

26 November 2013

VT-roff: a Terminal for the 21st Century

James K. Lowden

Continuum Analytics

1. Motivation

1.1. The xterm Time Warp
Every day, millions of computer professionals spend many hours trapped in a 1978 time warp. That

is the year Digital Equipment Corporation introduced the VT-100 ASCII asynchronous terminal. It was
among the first to support what would become the ANSI X3.64 standard, sporting a cursor-addressable
screen, blinking, bold, and underlined characters, 80 across and 24 high, beautiful green letters on an inky
black screen. That functionality is now most commonly provided in software, notably the ubiquitous xter m
program, which first appeared in 1984.

Although xter m has been updated continuously since its introduction, and continues to attract both
new users and new implementations (with some enhancements), its basic functionality remains unchanged,
rooted in the era of punch cards and leaded gasoline. While most software and technology from that era
has been superseded, xter m lives on, continuing to emulate now-defunct machines in the name of “compati-
bility”, a zombie haunting the city of Troy.

The problem is not that xter m & friends are ancient. The problem is that they remain the state of the
art. The deficiencies of the xter m model are well known. Not only is the basic functionality limited to
hardly more than the VT-100 that it emulates, but basic design characteristics of the terminal make it vul-
nerable to failure during routine use. Because it can be configured through in-band signaling, arbitrary data
streams routed to the terminal can easily leave it in an unusable state. For most users, the solution is simply
to close the window and start another session, losing whatever work was in progress.

Nor can xter m ev olve. Its raison d’etre is emulation; it must adhere to the standard. Because it is
ubiquitous, every supporting application expects and requires VT-100 functionality.1 This network traps
programmer and user into continuing the tradition.

It was not supposed to turn out this way. Human factors research pointed the way, as it were, to the
WIMP interface: windows, icons, menus, pointer. The character-cell terminal and the primitive command-
line interface, with its arcane commands and terse, mysterious messages were deemed anachronisms, pre-
venting ordinary people, unschooled in computer technology, from using the machine. The graphical user
interface (GUI) would make powerful machines more accessible and their users more productive. Indeed,
that has happened, of course, as the fortunes of Microsoft and Apple attest.

But for millions who depend on the computer for their daily work, the WIMP interface is not enough.
It is what they use for relatively simple, non-repetitive tasks. Contrary to research and universal expecta-
tion, nontrivial tasks continue to be most conveniently managed by issuing commands to an interpreter.
Work that requires the computer minutes or hours to complete, that needs to be logged, that is repeatedly
invoked, sometimes with minor changes to the input: all are commonly executed in the pre-WIMP world of
the command-line interface, almost always in a “terminal window” emulating the venerable VT-100.

Far from disappearing, the legion of xter m users is only growing. The arrival of so-called “big data”
and the “data science” to cope with it has thrust a whole new group — whose numbers are often too young
to remember The Mary Tyler Moore Show — into the xter m world. They are a legion of nomads, migrating

1 In fact, they require xter m functionality, and xter m is now the de facto standard for the thing it emulates.

26 November 2013

-2-

in time and space as needs dictate, from the near-forgotten world of xter m to the modern GUI. Clearly they
didn’t arrive at their mode of working by following fashion or advertising. However strange and antedilu-
vian it might be, the xter m environment must afford convenience, human factors research notwithstanding.

The vast on-going experiment that is Linux provides an object lesson: the WIMP interface may be
ubiquitous and approachable, but expert users gravitate to what is actually a simpler environment, where
they can issue complex commands using the entire keyboard. Yes, it’s hard to learn and not for everyone.
But we shouldn’t be too surprised. The same can be said, for example, of the violin, or algebraic notation.
Complex tasks are often best addressed with tools that seem baffling to the beginner.

If users are voting with their feet, computer science and commercial forces have conspired against
them saying, “No, that’s wrong, that’s old, that’s obsolete. You should use the GUI.”. A better answer
might be for those same entities to respond to the real-world experimental results, and provide a better ter-
minal.

1.2. xterm Limitations
Nothing about the limitations of xter m is new or surprising. If anything, the surprise is in how long

the list is, and how longstanding.

1.2.1. Graphics

The first obvious missing feature — although not entirely absent, as it happens — is the lack of
graphics. The xter m program emulates a character-cell terminal. Graphics of any kind, including text with
proportional fonts, are displayed in other windows, unconnected to xter m.

This situation is so long-standing that it’s considered natural. Experienced users invoke commands in
xter m that open a web browser here, an image viewer there, perhaps a spreadsheet, or presentation, or chart.
Then the xter m nomad migrates to the graphical application and uses it, separately, until needs dictate that
he return to xter m.

It is ironic. A standard xter m might be displayed in a GUI using a window of 484 dots across and
316 high, but it can’t use the GUI. Those 152,944 dots are inaccessible to the xter m application, and the
xter m user, except to display a fixed-width font in a 80x24 grid. It may be used to launch but not control
other applications, most of which take advantage of the dot-addressable screen afforded by the GUI.

Actually, the above statement isn’t perfectly true. Those pixels are addressable in an xter m, just not
feasibly. Besides the VT-100, xter m also emulates the Tektronix 4014, which was dot-addressable using a
10-bit scheme, meaning the application sends 4 bytes to encode the on/off values of 5 dots. At 38,400
bit/sec, commonly used in xter m configurations today, it would take

4/5 ⋅ 152, 944 ⋅ 8

38, 400
= 25 seconds

to draw a whole screen. The equivalent GUI operation requires a few microseconds.

1.2.2. Characters

In 1978, virtually all the world’s computer users spoke English. The VT-100 reflected that fact by
using the ASCII character set, which supports most of the characters needed for English (but lacking, for
instance, the £ and ¢ symbols). Although in recent years xter m has added support for Unicode, which
defines characters for all modern languages, for an xter m user to take advantage of Unicode requires much
more than simply starting it in Unicode mode. Because xter m cannot inform an application of the user’s
preferred character set, both xter m and application must consult a list of variables maintained by the operat-
ing system for each process (but useful chiefly to xter m and associated applications).

A typical GUI offers dozens of fonts, many proportional, but xter m, true to its ancestor, uses a fixed-
width font. System utilities often arrange output in columns that assume each character is the same width.
Although the same information could be arranged more attractively and more informatively using propor-
tional, scalable fonts, no standard outlet exists with those features. xter m is the least common demoninator,
with the emphasis on least.

26 November 2013

-3-

One common class of typeset documents is frequently viewed in an xter m: the system manual, better
known as the man pages. Consider

NAME
rm, unlink — remove directory entries

SYNOPSIS
rm [-dfiPRrvW] file ...
unlink file

DESCRIPTION
The rm utility attempts to remove the non-directory type files specified on the command
line. If the permissions of the file do not permit writing, and the standard input device is
a terminal, the user is prompted (on the standard error output) for confirmation.

This abridged example was taken verbatim from one of 7,602 pages of documentation installed on the sys-
tem used to prepare the present text. The variety of fonts help the reader distinguish between explanatory,
placeholder, and literal text.2 The typical user never sees the pages presented this way, with proportional
and italic fonts, because xter m does not support them.

When the user types man he invokes the ancient utility nroff to untypeset the page. As though tipping
its hat to history, nroff eschews even the ANSI control sequence for boldface fonts. Rather, it sends such
characters twice, separated by a backspace character, thereby “overprinting” the character, as if on a paper
teletype. The GNU less utility honors these backspace sequences, converting them to ANSI control
sequences for xter m to display. Users are sure to be relieved to know that, should it be necessary — or pos-
sible! — to connect an DEC Letterwriter 100 to the system, man pages will print just fine, with boldface
intact.

The nroff utility served a useful purpose in 1978, when the computer might have taken minutes to
print a typeset page, and when users had only character-cell terminals to view the pages with online. A
modern computer renders the page faster than it can be downloaded and displayed on a web browser.

The artificial limitations imposed by xter m and how it renders man pages has a pervasive, perverse
effect on the technical community. Man pages are easily found as PDF documents on the web, and fre-
quently they are rendered not in the most readable way, using a proportional font as presented above, but in
a monospace font, emulating the nroff output. So accustomed are users to seeing man pages that way, they
seem to think that’s how they’re supposed to look, unaware that the very same files can be rendered in pro-
portional fonts with barely a change to the processing command.

1.2.3. Color

The first VT-100 terminals had green characters on a black background. There was no provision to
change it. A modern GUI provides millions of colors, and xter m can take advantage of a handful of them.
But the application cannot interrogate the terminal to discover its color configuration. Consequently it can-
not adapt the colors it uses (or would use) for characters to the user’s expressed preferences.

The color problem is perhaps best illustrated by the pedestrian ls command, used perhaps hundreds
of times a day by an xter m user to display file names. Because in Linux a file’s function is independent of
its name, ls these days can display different kinds of files in different colors. This speeds the user’s ability
to distinguish between directories, executables, and plain text files, among others.

Or doesn’t. The ls utility cannot discover the background color of an xter m window; there is no tech-
nical facility to do so. Consequently the user must choose colors carefully and selectively, lest ls become
unusable. If he choses, say, green for directory names, it may be perfectly readable against a white back-
ground. Against a green background it will be invisible, something an experienced user can anticipate.

2 Monospace font represents computer input or output. Boldface indicates something the user types.
Italics is a placeholder; in this case file is to be replaced with a filename. The remaining text, set in a
proportional font, is explanatory, except for appearance of the command name, rm, which is boldfaced to make
it easy to locate and to signify that it refers to the command, and not the English word. (Although rm isn’t one
of them, some commands are also English words.)

26 November 2013

-4-

Many combinations are hard to read, and it’s not easy to guess what might work and what won’t. Which
colors work “well enough” is a matter of experimentation.

1.2.4. Complexity

The technology emulated by xter m is surprisingly complex, as might be guessed by perusing its
25,511 word manual. Most of that capability is long obsolete, because it offers “conveniences” that make
sense only when the user has a single terminal, with a single 80x24 display, through which to interact with
the system. Features such as alternate displays, font sizes, line-drawing characters, a graphical mode, and
the ability to emulate long-vanished keyboards are no longer relevant. As an example, xter m includes the
ability to switch between 80- and 132-column modes; the sending application need only transmit the proper
sequence, and xter m will switch to a narrower font, 132 characters to a line. In a modern system, the fea-
ture is never used. If the user wants a wider “terminal”, he grabs the window edge and makes it wider.3

Curiously, xter m also imposes complexity on the underlying operating system. Just as xter m is emu-
lating a VT-100, so do components of the OS emulate long-missing hardware to which the VT-100 was
once connected. Every xter m is supported by pseudo-terminal connected to virtual serial port with a line
discipline running at a certain speed, typically these days at 38,400 bits per second. None of this machinery
exists anymore, nor ever will, except in museums and in the virtual world behind xter m.

If all these things worked well together, perhaps the unnecessary complexity wouldn’t be so bad.
Unfortunately they don’t, and cumulative effect is to inhibit progress and disuade programmers from step-
ping into the tar pit. As, Simon Tatham, author of PuTTY, another VT-100 terminal emulator, says on his
web site,

Once upon a time, I had a vision that maybe it would be possible to take the Linux telnet imple-
mentation, and the xter m front end, and hack them together to form a terminal-emulator-and-
telnet client which should then be relatively easy to port to Win32. So I tried it. It was an utter
failure: I have never found two more mutually hostile pieces of software. So I re-implemented a
terminal emulator, and Telnet, from scratch....

The old VT-100 provided in its day a measure of user interaction by enabling the application to place
characters anywhere on the screen, to change their appearance (including, later, their color). This capability
gave rise to the so-called full-screen editor, of which vi and emacs are two examples.4 It is also largely ves-
tigial today: vi and emacs both long ago developed GUI versions (although the character-cell versions
remain useful). Other cursor-addressing applications are mostly forgotten, or have moved to the GUI. The
major force that drove that move was the richer environment afforded by the GUI, but another factor was
the complexity of writing cursor-addressing applications and the limited functionality such applications
could offer.

For the most part, xter m users today invoke programs from a command-line shell. Cursor-address-
ability is mostly used to move along that command line by character or word, or to jump to the beginning or
end of the line.

1.2.5. Fragility

In a VT-100 (and still in xter m today) all information arrives at the terminal from the system via the
(now virtual) serial port as a stream of bytes. Meta-information — to control appearance, place characters
at arbitrary positions, or to turn features on and off — arrive over the same port as part of the same informa-
tion stream. This interlacing of data with metadata is known technically as in-band signaling. More com-
monly the control sequences are referred to as “escape codes” because the first character is the ASCII
escape character. Today of course GUI applications achieve such effects and much more through out-of-
band signaling: the application controls the window through function calls to the GUI. Information to be
displayed in the window carries the data only, nev er metadata.

3 On the system used to compose this paper, the maximum terminal size was unimaginable in 1978: 318
characters wide and 88 high, with a dot-addressable display containing 2,261,760 pixels, 1920 across by 1178
high. The processor supporting it is perhaps 9 orders of magnitude faster than the Intel 8080 used int VT-100.

4 Nowadays, of course, these applications run in terminals that are themselves windows. Hardly anyone calls
them “full screen” anymore, and fewer still remember the line editors they replaced.

26 November 2013

-5-

Because most of the complex features that the control sequences can affect are unused, the sequences
themselves are, for the most part, unwanted. The user does not want the incoming data stream — i.e., the
data to be displayed, or so he thought — to move the cursor, or change the character attributes, or alter the
font size. Most especially he doesn’t want the meaning of the backspace and return keys to be changed.
As a baseline for functionality, the user would prefer that whatever information arrives at the port, the con-
figuration of the xter m displaying it remain unchanged. Unfortunately, that cannot be the case for xter m if
it is to stay true to its purpose of emulating a VT-100 terminal.

With some frequency — not every day, perhaps, but a few times a month, even for an experienced
user — an attempt to view a file ends in tragedy because it contained data that xter m interpreted as a control
sequence. In most cases the cause is pilot error; the experienced user learns never to send data of uncertain
provenance to the terminal. Looked at another way, though, it’s failure by design: why should sending arbi-
trary data to the screen cause the system to become unusable?

It’s worth exploring that question a moment. How likely is it to happen, after all?

A VT-100 control sequence begins with the ANSI escape character, a single byte whose value is 27.
A sequence of 27 91 2 74, for instance, clears the screen. Other sequences turn features on and off, or
change the meaning of keys.

A byte can hold up to 256 different possible values, of which 27 is one. The probability of a ran-
domly selected single byte in a randomly selected file having that value is 1/256, or 0.39%. As the size of
the file sent to the terminal grows, the probability of one of those bytes being 27 approaches 1.0, as does the
probability that the ensuing happenstance sequence will be “interpreted” and acted on by the terminal.
Meanwhile, the probability of that being the user’s intention or a desirable outcome approaches zero.

1.2.6. Functionality: Not

A few basic functions make the command-line environment easier to use:

• Editing the command line: moving to the beginning or end of the line, moving by word or by
character, and cutting and pasting portions of the command

• Listing and searching through previously issued commands

• Displaying file contents or program output, and scrolling the text up and down

Fundamental as these are, they are not provided by xter m. All xter m does is send keystrokes and dis-
play characters. It is up to the program interpreting those keystrokes to do something useful with them.

The first two functions are typically provided by the keystroke-processing library readline or, some-
times editline. Simple programs that do not use these libraries leave the user out in the cold. Including
them isn’t especially difficult,5 but their very necessity is a throwback to the non-programability of the
VT-100. All functionality, even moving the cursor along a single line, is provided by the host application.

Because the terminal sends keystrokes and the receiving program processes them, even cursor
movement requires configuration. As with color, the division of function involves the user in arcane detail
from which he has absolutely nothing to gain.

An example may help illustrate. The readline program has a move by word feature.6 Usually this is
mapped to two key combinations: control-arrow (left or right) and, because emacs uses them, alt-b and alt-f
(mnemonically, before and after). But what is alt? The VT-100 didn’t hav e an alt key and the present text
will spare the reader further arcane details. When the user presses alt on his keyboard, xter m sends a control
sequence representing the key. The sequence is configurable, of course, this time by the X server itself,
which defines the keyboard. Because the defaults for readline, xter m, and the X server were set by people
who almost certainly don’t know each other, it’s not uncommon for the X meaning of alt not to be what
readline expects. Then, when the user types,

5 readline does present some portability issues, however.
6 In fact, every readline feature can be mapped to any key. A great many Linux users have spent a day or

more discovering how.

26 November 2013

-6-

$ ls *.txt

and presses alt-b, instead of moving the cursor back before the *, he sees

$ ls *.txtâ

This happens because the control sequence sent by xter m is not the one readline recognizes as meaning
“more the cursor left one word”; in fact, xter m hasn’t sent an actual ANSI control sequence, one that leads
off with the ASCII escape character. Not to worry, because xter m has a feature called meta sends escape
that maps what the X server has deemed the meta character to send an ASCII escape. This feature can be
invoked through an xter m menu. To make it permanent, the user who knows the X property grammar sim-
ply makes the appropriate entry for xter m in the ˜/.Xresources file, and configures the X server to
update its property database (by running xrdb) when it starts. He’s also well advised to make sure the ter-
minal and readlines are similarly configured on all the machines he uses. Frequently, he decides just to use
control-arrow.

The last function, displaying and scrolling text, involves an odd ritual so engrained in the user experi-
ence that it seems natural, but isn’t. If a command produces more output than can be displayed on the
screen — that is, in the xter m window — the text scrolls off the top of the screen to make room for the next
line at the bottom. xter m supports a limited capture feature: the user can set the number of lines to be
buffered off-screen, to be scrolled down to view. The contents of this scrollback buffer cannot be searched
or archived, except by copying and pasting the text.7

A better facility for displaying files and capturing output is a pager. Most programs that present
information for the user to peruse do not include a built-in pager. By convention, the application discovers
the user’s configured pager by consulting the PAGER environment variable, the value of which is usually
the name of a text-display utility. In the event no such variable has been established, most programs will
invoke the system pager, often /usr/bin/more.

Because the xter m scrollback buffer is essentially featureless, the novice user quickly learns the
virtue of capturing text in the pager. Because that’s not done automatically, he becomes accustomed to
tacking | more (or similar) onto the end of any command likely to produce voluminous output. Thus
does a basic feature of the display become one the user learns to provide for himself.

Very few users use more than one pager. In fact, very few pagers exist and one, GNU less, is ubiqui-
tous. The lack of variety is an indication that pager functionality is not something users feel the need to cus-
tomize. The continued active dev elopment of GNU less, on the other hand, demonstrates its usefulness.

1.2.7. xterm: Unsuited to the Purpose

The modern command-line interface — exemplified by xter m and emulated by many others — has
ossified. It suffers from being good enough for most purposes; its features tolerated because they can usu-
ally be avoided. The layers of emulation and the design goal of emulation inhibit innovation, because
changing anything means changing a great many others, with only speculative benefits and near-certain
resistance from those who maintain and use them. The xter m utility is a vehicle through which other work
is done, not an end to itself. As such, it is crucial that it remain unchanged. Although the problems are
long-standing and widely recognized, the path out of the morass is not.

Vendors are uninterested, for if the xter m user community has voted with its feet, it is not voting with
its wallet. Widespread adoption of any plausible successor would require the cooperation of a variety of
actors, many of whom have no particular interest in xter m per se. To the extent that an alternative required
changes to existing software, such change is extremely unlikely to be forthcoming unless the source code
were freely available. An open-source implementation would both encourage widespread distribution (as
part of Linux) and guarantee the program’s continued availability into the future. Desirable as such a new
platform might be to users, it offers no profit incentive to commercial software vendors.

It is a market ripe for disruption that no one can disrupt.

7 And only the text. No formatting information is preserved.

26 November 2013

-7-

Many of the same constraints apply to the free software community. A new and better terminal,
while not nearly as complex as many successful free software projects, is too large for one person to under-
take in his spare time. Without a reference implementation, the intrepid programmer has little hope of
attracting attention, much less persuading any like-minded fellows to join him. In short, something radi-
cally new offers no model for a community to form around.

The best hope for change would come from a large, publicly minded entity interested in improving
the workaday experience of millions of people in exchange for their mostly silent thanks. And, of course,
for the satisfaction of a job well done.

2. Features of a New Terminal
Consider in broad strokes what a highly functional command-line facility might look like.

• handle all cursor movement

• capture program output automatically, infinitely, and facilitate searching/saving it

• support job control in some form, to run jobs in the background and capture their output modi-
fied shell ask the simplified shell for help with tab-completion

• provide a dot-addressable canvas for applications

In short, something of a cross between a web browser (local cursor, infinite capture, multi-session) and a
printer (dot-addressable canvas). Or an interactive PDF document, perhaps. This section describes how
each of these features simplifies the entire system and improves the user experience.

2.1. Local Cursor Control
Local cursor control simplifies the system by removing the need for several pieces of software. It

improves the user experience by returning control to one program, the local terminal.

On the system used to prepare this paper may be found no less than 85 programs that interpret the
keyboard in some way. Many are, for all intents and purposes, obsolete. Some, such as bash, are shells. A
few others, such as top (which shows processes consuming CPU time) make use of xter m’s character-cell
addressability. None has any need to control the cursor. They control the cursor to afford the user certain
conveniences commensurate with a 1970s system.

By removing cursor control from the host program, several pieces of supporting software fall by the
wayside:

readline Instead of managing individual keystrokes, the application accepts fully formed input
from the terminal. readline also keeps a history of commands and provides features for
the user to scroll back or search through them. One of the complexities readline confronts
is to keep a separate history for different client applications for the user. Another is that
the user may — in principle, at least — have any kind of terminal and keyboard known to
the system,8 and the user may map any key to any readline function. Unfortunately this
feature offers less than it might seem: if the user does connect with another type of termi-
nal, readline will not detect it. It is up to the user to configure his login scripts to load dif-
ferent readline options for different terminals, or to harmonize among the terminals the
keystrokes sent to readline.

termcap The mirror of readline, termcap provides a uniform set of functions to address the termi-
nal, allowing a program to clear the screen, for instance, without regard to the kind of ter-
minal attached or the particular control sequence used for that purpose.

ncurses The little-loved ncurses program provides a similar set of functions for keyboard manage-
ment, allowing a program to move the cursor anywhere on the screen in response to the
keys pressed. The new ncurses program is rare indeed. Most such work migrated long
ago the a GUI or web browser.

8 and long forgotten by man

26 November 2013

-8-

pty The pty driver is probably best described by its man page:
The pty driver provides support for a device-pair termed a pseudo termi-

nal. A pseudo terminal is a pair of character devices, a master device and a
slave device. The slave device provides to a process an interface identical to that
described in tty(4). However, whereas all other devices which pro vide the inter-
face described in tty(4) have a hardware device of some sort behind them, the
slave device has, instead, another process manipulating it through the master
half of the pseudo terminal.

The pty is responsible for handling various aspects of communication with the terminal.
For example, a program may accept one line at a time, known as cooked mode or, if as in
the case of a text editor (or top), it may put the line in raw mode to process each keystroke.
It also handles a primitive stop/start feature, whereby the user may press a special key,
usually control-s, to stop the computer from sending output to the terminal. This permit-
ted the user to read the fast-appearing output before it disappeared off the top of the
screen, handy for those occasions when he hadn’t thought of the pager beforehand. Saves
paper, too.

It may be noted that control-s is used for a variety of purposes in different applications,
usually in support of search or save. The unwary user who presses control-s in the shell
soon finds it mysteriously unresponsive. The experienced user recognizes his “mistake”
and presses control-q to resume communication. Everyone else just abandons the window
as unusable.

Simple applications — those with no logical use for keyboard control, or that, like top, update a static
display, can dispense with the entire supporting cast of terminal-control software. They can simply read the
input prepared at and sent from the user’s terminal, and send output to it as though to a printer. This mode
of interaction is in fact very familiar; it describes interaction with a web browser.

2.2. Local Pager
The computer supporting xter m today has vast resources far in excess of that required to buffer output

from a command-line program, even if that output is millions of lines.9 The model for a local pager is the
existing pager, exemplified by GNU less, and simplified, shorn of its concern for terminal variety and line-
discipline issues. Retained would be its search and scroll features, and its ability to save the information it
captures.

Something missing from less, because it’s only a pager, after all, is the capacity to invoke other pro-
grams or “follow a link” in a general sense. As shown later, this could be a feature of a local pager.

2.3. Local Job Control
In an xter m connected to a shell that supports job control, the user can run multiple processes at once

in the same shell. Faced with a (perhaps unexpectedly) long-running command, the user sends a suspend
signal, usually by pressing control-z. This places the active process — often one that is unresponsive, pre-
dictably or not — in the “background”. The user is presented with a new prompt, and may choose to leave
the task suspended, continue it in the background, or kill it.

While support for this feature depends on the shell, what does not depend on the shell is where the
output goes. The terminal has a single connection open to the shell; all input and output travel over that
link. Background tasks may write to it, and will, if their output was not redirected when the task was
started.

It’s hard to see much utility in job control in an environment in which the terminal manages com-
mand history and paging. Instead of a suspend signal, control-z could be trapped by the terminal. The run-
ning job would continue to run, its output captured in a local buffer to be viewed later, and meanwhile a

9 If for some reason the sending program does exceed the capacity of the receiving terminal to deal with it,
the terminal always has the option of not receiving it, that is, of not reading what the sender is sending. The
effect is to block the channel at the sender’s end, precisely the same as with control-s but much more efficiently,
and under program control.

26 November 2013

-9-

fresh connection opened, providing a new prompt. Whether the “background” tasks are managed in “tabs”,
as in a web browser, or some other way could vary by implementation.

2.4. Tab Completion
One very helpful feature provided by most shells today goes under the rubric of tab completion.

Using GNU bash as an example, the user types part of a command or filename, and presses tab. The shell,
which is processing keystrokes one at a time, can usually infer what the incomplete word refers to. If the
partial text matches a unique word, shell provides it and advances the cursor. If not, nothing seems to hap-
pen, unless the next character is also a tab, in which event the shell prints a list of choices. Often with a few
more keystrokes the user can form a unique substring, press tab again, and move on.

In an xter m the shell processes the command-line a keystroke at a time. A terminal with local cursor
control would send entire commands, fully formed, a line (or more) at a time. What then becomes of tab
completion? Should the terminal do it itself? And, who needs the shell anymore anyway, if the terminal
has taken over its work? Doesn’t the terminal become the shell?

In the presence of a terminal such as this document describes, the shell is diminished and simplified,
but not obsolete. In the xter m world, the shell is really two components: a command processor and a user
interface. Indeed, some Linux systems distributions use two shells: bash for interactive use, and dash for
script processing.10 A terminal with more local capability takes over many user-interface features, but the
shell retains the function of command-line processing (and script processing).

Because the terminal is not actually interpreting the command line, it cannot support tab completion.
The shell defines both the command-line syntax and the locations it will search for files and executables.
Tab completion therefore is a user-interface feature the shell would need to support, albeit not in the xter m
way.

If the terminal normally sends complete commands to the newly simplified shell, how might it
request suggestions from the shell, and provide them to the user?

The question requires careful consideration. While several solutions are possible, one must take care
not to impose new syntax that might conflict with existing use. Because there are millions of shell scripts
and shell users, the window for new syntax is nearly closed. Nevertheless, shell authors and POSIX
mavens may find a way.

A different approach would be to use a second connection. The terminal would send whole com-
mands over the usual channel, and use a second connection, perhaps called the metachannel for help of var-
ious kinds. The terminal could send, say,

PARTIAL: open documen→

(where the → symbol represents the ASCII TAB character). The shell could reply with a list on the same
channel for the terminal to display. This mode of interaction over a second channel opens a wealth of pos-
sibilities unavailable to xter m.

2.5. Dot-addressable
By dropping the character-cell model, we free the terminal to avail itself of the underlying GUI of

which it is a part. Rather than simply displaying ASCII characters as they’re sent by the program, and
intercepting a few control sequences for primitive positioning and simple character attributes, the terminal
can present the window it occupies to the program as an open canvas on which to draw.11 In effect, the ter-
minal becomes a virtual printer. When the application is done drawing, it presents a cursor and a prompt,
and resumes command-line processing.

10 dash has been shown to be about twice as fast at script execution as bash. It achieves efficiency partly by
eschewing features that make interactive user more convenient.

11 Veterans of the early days of GUIs may recall the promise of Display Postscript, which once promised to
be the way programs rendered text and graphics on the screen (and lingers on today in OS X). When it was pro-
posed in the late 1980s, workstations were far slower than modern machines, had relatively few fonts, and lower
resolution displays. These shortcomings detracted from Postscript’s otherwise fine qualities for the purpose of
drawing on-screen graphics.

26 November 2013

-10-

3. Introducing VT-roff
A VT-roff terminal would support the most widely distributed, and nearly forgotten, document prepa-

ration system in existence: troff, and its GNU implementation, groff.

Output Language

sn size in points

fn font as number from 1 to n

cx ASCII character x

Cxy character \(xy; terminate xy by white space

Hn go to absolute horizontal position n. (n > 0)

Vn go to absolute vertical position n (down is
positive)

hn go n units horizontally (to the right; n > 0)

vn go n units vertically (down; n > 0)

nnc move right nn, then print c

nb a end of line (information only — no action
needed)
b = space before line, a = after

w paddable word space (information only —
no action needed)

pn new page n begins — set V to 0

x ...\n device control functions

D ...\n drawing functions (graphics)

Device Control

x i init

x T s name of typesetter is s

x r n h v resolution is n/inch, h = minimum horizon-
tal motion, v = minimum vertical

x p pause (can restart)

x s stop — done forever

x t generate trailer

x f n s font position n contains font s

x H n set character height to n

x S n set slant to n

Drawing Functions

Dl dh dv draw line from current position by dh dv

Dc d draw circle of diameter d with left side here

De d1 d2 draw ellipse of diameters d1 d2

Da dh1 dv1 dh2 dv2
draw arc from current position to
dh1 + dh2dv1 + dv2, center at dh1 dv1 from
current position

D˜ dh1 dv1 dh2 dv2 ...
draw B-spline from current position to dh1
dv1, then to dh2 dv2, then to ...

Output to the terminal is of two kinds:

1. Plain text, encoded as UTF-8, where
the sending application (e.g., ls)
assumes a monospace font.

2. Formatted text and graphics, as a vir-
tual troff printer.

At right is the device-independent language
sometimes called “ditroff ” that Brian
Kernighan invented in 1982 to serve as an
intermediary between troff input, with which
a user prepares a document (usually with the
aid of a macro package), and device input,
the langage of the printer or other device.

The troff program emits this primitive
move-here-print-that language, sending it to
a so-called post-processor, which uses what-
ev er mechanism the device supplies to ren-
der the output. VT-roff would be such a
post-processor, and the underlying graphics
library often, but not necessarily, X. Not
only is it simple to implement in terms of X,
it’s already been done, quite successfully, 20
years ago. The groff project includes
gxditview, intended for viewing troff docu-
ments natively on an X11 system.

Let us now consider how VT-roff
compares with xter m based on the analysis
in the previous section.

3.1. VT-roff Capabilities

3.1.1. Informational Coherency

Because it is cursor-addressable, input
and output on an xter m are interspersed: The
user may enter information anywhere on the
screen (wherever the application has placed
the cursor) and the system’s output may
likewise appear anywhere. It is a system
without history. Many utilities clear the
screen at some point, erasing what came
before, regardless of how it was created or
the user’s wishes. Processes running “in the
background” under job control can also
write to the terminal, sometimes with the
effect of inserting the output of one com-
mand in the midst of output from another on
the same line, or in the middle of the user’s
input. The result can be difficult to interpret
ev en for the experienced user.

26 November 2013

-11-

Always Forward

VT-roff adheres to the policy: output follows input. Input and output both appear at the cursor and
nowhere else. VT-roff provides no cursor control to the application; there is no “up”. Consequently history
is preserved; prior commands and their results can reviewed in simple, linear form.12

On pressing Enter, the terminal sends the command to the system, and moves the cursor to the begin-
ning of the next line. Output commences from that position.

Combining Text and Graphics: stdgrph

VT-roff accepts output from the system over two ports, one for text, the other for graphics.

The text port, as ever, is connected to standard output. VT-roff interprets the text literally: it emulates
a simple dumb terminal, printing the characters sequentially in monospace font, honoring tabs, carriage
returns, and newlines. In short, it behaves like xter m, minus cursor control. Readers of a certain age may
recognize its resemblance to a typewriter.

The second port, here designated standard graphics, accepts ditroff-formatted text and graphics.

An application that prepares its own ditroff sequence can simply open a connection to the standard
graphics port and begin writing. The x init sequence puts the VT-roff implementation into “graphics
mode” and indicates to the user that something graphical (or at least not just plain text) is about to dis-
played. One example of such an application might be groff itself, with a new post-processor that simply
redirects the ditroff output to the graphics port.

Applications that rely on troff or its preprocessors to generate ditroff need only invoke troff using the
VT-troff post-processor.

Perhaps the simplest solution is to have a shell, when hosted by VT-roff, open a fourth file descriptor.
The application could simply write ditroff directly to filedes 3.

By using two ports, VT-roff avoids the problems that accompany in-band signaling: any valid UTF-8
values output to the primary port are reflected int the terminal, and no values presented there affect the ter-
minal’s configuration. Nothing is erased. The meaning of the keys is unaffected; the terminal remains fully
functional. Extra “garbage” (perhaps graphics instructions printed literally) is at least readable, if
inscrutable. For convenience a VT-roff implementation could choose to provide the user with the ability to
select and erase displayed information to remove unwanted output.

Arbitration and Type-ahead

Because VT-roff produces one display from three input streams (keyboard, standard output, and stan-
dard graphics) it must in some sense arbitrate between them when more than one is sending data at a time.
It would be a shame for a a graph or typeset graphical output to be disturbed by an accidental keystroke or
warning message from the sending application. Better would be to let each operation run to completion
unless the user explicitly request it be interrupted.

xter m does not arbitrate; if the user types something while output is being displayed the typed charac-
ters appear amidst the output, producing a confusing result. Experienced users exploit this feature by “typ-
ing ahead”, queuing keystrokes until the command-processor reads them.

To ensure a coherent display, while the graphics port is active, it is giv en priority. Text output from
the system is given secondary priority; any messages produced “alongside” the graph are printed subse-
quently.13 To facilitate type-ahead (which remains useful), VT-roff could capture the “next” command in a
sub-window of some sort that provides a temporary (but fully functional) place to prepare the next com-
mand.

12 This always-forward policy applies to the cursor, which exists only in text mode. Graphics mode has no
cursor, and ditroff commands perforce may draw up and down as desired, permitting periodic redrawing based
on time or user input.

13 A VT-roff implementation should enable the user to terminate the graphic output if so desired.

26 November 2013

-12-

3.1.2. VT-roff Formatted Text Graphics Support

Implemented as a troff post-processor, VT-roff is as capable of producing typeset text and graphics as
any printer, subject to display resolution.14 Existing documents, notably man pages, become more readable
without alteration. The troff tools, installed on most Linux systems, are available for mathematics, tables,
vector drawings, and graphs. Depending on need and sophistication, programs wishing to address the
screen graphically could send ditroff directly, or inv oke troff tools.

Some potential features — new capabilities afforded by implementing VT-roff as a ditroff post-pro-
cessor, should an implementation choose to support them — stretch the meaning of a terminal as generally
understood. For example, strange-but-useful interactive programs based on ncurses, such as top, could be
re-implemented in terms of ditroff by “overprinting the page”. Similarly, hypertext links — already sup-
ported in the GNU troff PDF post-processor — could be displayed and used. Not only would that pave the
way to hyperlinked man pages, but simple filters could use the terminal’s underlying graphical features.
Among other uses, relatively simple programs might display image files and PDF documents, or implement
a web browser.

3.1.3. s/Complex/Simple/g

VT-roff trades the accidental complexity of VT-100 cursor addresability for simple dumb-terminal
text and equally simple printer graphics. It presents its graphics and formatted text functionality as a new-
old thing:

• a language consisting of 27 directives, 11 for text output, 5 for graphics, and 9 for device-con-
trol.

• The higher-level troff input language on which troff macro packages are built

• various pre-processor packages with domain-specific languages to describe tables, equations,
pictures, and graphs

These languages provide different levels of abstraction from the underlying GUI, and afford the program-
mer different levels of control for the display of high quality text and graphics. Furthermore, by using
existing tools, the same output can readily be redirected to a printer or PDF file.

At the same time VT-roff removes the need for several tools regularly employed (sometimes unwit-
tingly) by user, and the need to make those various tools interact smoothly. Rather than seeking out the
readline configuration file or guessing how to coordinate ls colorizing with xter m colors, the user configures
VT-roff, once and for all.

3.1.4. s/Fragile/Robust/g

By discarding xter m and its VT-100 emulation, we close the door on myriad problems, not least of
which is the fragility of the terminal, the way it’s subject to failure when presented with an incoherent data
stream. The language contains no commands to affect the keyboard, to start and stop output, nothing that
could send the terminal off to nev er-never land, as so often happens with xter m. Notably absent, in fact, is
any notion of conventional terminal control, including clearing the screen.

While a terminal prepared to interpret this input would not be able by itself to render, say, a PDF file,
neither is it apt become corrupted in the attempt, because the ditroff language lacks any feature to alter or
configure the VT-roff terminal.

4. Similar Work
The VT-roff terminal includes the following features:

• command-line editing

• integrated pager

14 Laser printers have much higher resolution than computer displays, typically 1200 dpi and 96 dpi, respec-
tively.

26 November 2013

-13-

• replacement for job-control features

• simple, dumb-terminal display of text

• Mixed “dumb” text and printer-like graphics in the same window as an infinite, integrated,
scrolling buffer

To the author’s knowledge, nothing quite like it has been attempted.

Character-cell terminals such as xter m emulates disappeared decades ago. Graphical terminals never
replaced them. Rather, they were replaced by entire GUIs, of which xter m was supposed to be an increas-
ingly diminishing part.

GUIs themselves do, therefore, in some sense represent similar work, a giant experiment in supplant-
ing the character-cell terminal. Observation suggests they will continue to demonstrably fail one class of
users.

The web browser can also be seen as similar work. The user issues a “command” to the browser (in
some sense) by entering a URL or filling in a form, and the result combines text and graphics in one win-
dow. The browser also in effect offers job-control and the ability to browse command & output history.

A web browser includes features not contemplated for VT-roff, such support for audio and video, or
just handing control of a portion of the window to another application. On the other hand, the web browser
is poorly integrated (often intentionally) with the system it runs on.

The author is not aware of research using the web browser to replace or integrate with a command-
line shell.

Bell Labs produced a better terminal for Plan 9, the operating system it designed as a replacement for
UNIX. That terminal, known as 8½ in Plan9 and as 9term in its UNIX variant, includes local cursor control
and integrated pager. Like VT-roff, 9term uses UTF-8 text, but 9term has no provision for graphics.

The input and output captured in 9term is not strictly linear, as in VT-roff: the user can move text
around the buffer and submit the edited text to the system. Output is then inserted in the buffer at the cur-
sor.15 9term provides richer local editing features than VT-roff, which deserve consideration.

5. Example Applications
It may be useful to consider in concrete terms how the existence of a graphical terminal might affect

the design of existing applications.

5.1. R
Many applications, of course, integrate text and graphics. Perhaps the R Project is as good an exam-

ple as any. Of necessity — because there is no graphical terminal — R has two kinds of windows: text, for
command-line input and output, and graphics for output.

Like any such application, R is more or less forced into dealing with windows — which are orthogo-
nal to its goal of displaying graphs — by the lack of a graphical terminal. Also in keeping with similar
applications, it doesn’t do a particularly good job of associating input with output for later review. Nor is
there any graphical output stream, such as ditroff, that could be captured and shared. Preserving and shar-
ing the graphs is an entirely separate effort.

R is made more complex than absolutely necessary as a multi-window application. Not only must it
manage the windows but, because window management varies by operating system, that part of the R sys-
tem is duplicated, tailored to each operating-system.16 A graphical terminal would present R with OS-inde-
pendent graphical facilities: ditroff at the lowest level and, at a much higher level, grap, a troff preproces-
sor that converts e.g. time-series data into a graphs.

15 known in 9term as the output point.
16 This is one reason so many applications are now written as web applications. Browsers vary, but less than

GUIs do.

26 November 2013

-14-

5.2. SQLite
Another class of applications that would benefit from a graphical terminal produce tabular output.

Perhaps the prime example would be SQL query editors, of which SQLite is just one example. Like R,
most SQL DBMSs offer a GUI tool for composing SQL queries and viewing the results. They suffer from
the same problems, too: lack of input-output connection, no linear history, window management and atten-
dent complexity orthogonal to the application domain.

Tabular output — which interactive SQL applications share with R — benefit more than might be
apparent at first blush from a dot-addressable canvas. The ability to draw lines between columns and rows,
to shade alternating (groups of) rows, to put headers in a larger font, or to otherwise highlight particular
regions. In VT-roff, the integrated pager would support scrolling and searching just as with any other text.

Tabular output is effected most readily in troff with the tbl preprocessor, the output of which is passed
to troff, which in turn could write to VT-roff. While that would be a perfectly fine version 1.0, the terminal-
as-printer motif does fall a little short in terms of user experience: the user cannot resize the columns of the
tabular output, or re-sort the table by a particular column, or indeed affect the output in any way. The sim-
ple ditroff language has no notion of “row” and “column”, much less of a table, or sorting one.

The experience could be greatly enhanced if VT-roff had its own, simpler version of tbl devoted to
regular, grid-like output that the terminal could capture and manipulate. Such a feature is outside the scope
of this paper, howev er.

5.3. Documentation
The state of Linux documentation is one of disarray, using a variety of technologies. The system

itself is documented as man pages, which are troff documents. Some application also supply man pages,
but many use HTML or PDF documents instead. Some GNU projects use info files, a system once pro-
moted by the GNU project as a replacement for man pages.

This variety is partly the product of desire on the part of both writers and readers for good-looking,
readable documents, something xter m and nroff decidedly do not provide. VT-roff would rectify that situa-
tion immediately, simply by supporting formatted text.

A higher level of functionality would include support for hyperlinks. In troff, hyperlinks are sup-
ported two post-processors: grohtml for HTML, and gropdf for direct PDF output.17 Extensions to the
device control portion of ditroff let the troff input supply hyperlink data to the post-processor, which can
embed them in the output document such that the displaying application recognizes them.

In VT-roff, the terminal itself is the displaying application. If it supported the same extensions that
gropdf does, the user would be able to browse within and between documents. As long as the linked-to
document is troff input on a local filesystem, VT-roff would need very little logic to support it directly.
Links could be added to man pages, making them as convenient to use as any other system, and much eas-
ier to print than HTML.

6. Conclusion

6.1. Capable and Simple
VT-roff incorporates the most important aspects of command-line work, and simplifies both their

user affordance and their implementation.

The VT-roff user does not coordinate the colors, fonts, encoding, and keystroke definitions of read-
line, less, and xter m on the various systems he uses. He cannot crash the terminal by sending it binary data.
Output is never lost off the top of the screen, but is uniformly preserved, where it can be scrolled, searched,
and saved. Long-running jobs can be parked, their output segregated to another buffer, as appropriate for a
concurrent process to a linear-output model. Te xt and graphics can be interspersed, their relationship main-
tained by the forward-only output model. With the addition of simple utilities modelled on cat, he can

17 Until recently, PDF documents were not directly supported by groff. groff produced Postscript files, and a
separate utility converted that to PDF.

26 November 2013

-15-

display a variety of files right in the terminal.

The VT-roff programmer has a simple, 11-command language for text output. He need not involve
himself in windowing systems and their proprietary functions. Or, should he prefer, the higher-level func-
tionality of troff and its preprocessors are also available, and entirely compatible.

The system supporting VT-roff can eventually shed its character terminal baggage, the software sup-
porting and emulating long-obsolete equipment. troff itself on the other hand, much disused at present, gets
a shot in the arm as a newly central part of the display technology. The effort that has gone into creating
troff is not lost or reinvented. Efforts devoted to attractive formatted text presentation, somewhat dispersed
across various projects because of the lack of a graphical terminal, can be centralized in one place.

A graphical terminal represents a new way for users to interact with command-line applications. In
some ways it mimics features outside an xter m environment. In other ways it incorporates them.

6.2. troff Leverage
The troff system is mature, fast, and small. It has been and continues to be used to prepare

manuscripts of all lengths, including books. The present text, all of it, renders on an ordinary laptop in one
second. The entire suite of troff tools is measured in megabytes, a rounding error on modern systems.

troff has been part of the X environment for its whole existence, and ditroff has already been mapped
onto X primitives. Using troff to define a graphical X terminal, while novel, is nonetheless both a natural
chose and an efficient use of existing technologies.

6.3. VT-roff Potential
The problems of xter m, although widely acknowledged, present no commercial opportunity for soft-

ware vendors. Only a freely available implementation, an example for others to explore and follow, and
perhaps emulate, would have the standing to move users and programmers away from the tried-and-true,
but obsolete-and-restricted xter m terminal.

A graphical terminal represents a real advantage to users and programmers alike. Arguably, VT-roff
represents research into a new way the for user to use the computer. At the very least it represents an alter-
native that hasn’t been tried. As the VT-100 passes its 35th birthday, it’s about time someone did.

26 November 2013

