
For the Love of Troff

James K. Lowden

Symas Corporation

ABSTRACT

The state of Unix documentation has not advanced for decades. The venerable
man page remains the backbone and, as Hoare might have predicted, an improvement
over many of its successors.

The plethora of competing formats and systems has created a fragmented and con-
fusing body of documentation, confusing to users who don’t know where to look, and to
writers who don’t know where to start. One need only to search for HOWTO documents
on writing documentation for conformation.

This paper reviews the state of the art, and critiques the variety of documentation
systems in current use. It explores why new systems were invented, which are currently
fashionable, and suggests a path to a better, unified documentation system based wholly
and solely on troff.

The Stale State of the Art

In the beginning was the man page. It divided darkness from light. And it was good.

But apparently not good enough. Would-be successors include Texinfo, DocBook, Doxygen, and
Markdown. Formats, beside the terminal console, include PDF and HTML. Locations might be
/usr/share/man, or /usr/share/doc or /usr/share/info or /usr/share/html, or pretty much anywhere else in
/usr/share, or only on the web.

To each its own silo. There is no comprehensive cross-reference, no accepted universal structure or
encoding or output format. There are different schools of thought about how to encourage better documen-
tation to be written, what the best output medium is, and what system should be used to render the output.

Rather than progress toward a single, all-encompassing system that utilizes the full capacity of large
memories, Unicode, and bit-mapped displays, documentation technology is regressing and fragmenting.
The built-in typesetting system, troff, is considered by many to be vestigial and archaic. Yet every alterna-
tive is less functional, or more complicated, or both. On most BSD systems troff has been replaced by the
less functional mandoc. GNU continues to promote Texinfo. Perl had pod. Python has pydoc and pro-
motes Sphinx. Subversion goes post-modern: web-only. Many use Markdown, a system with no standard,
never mind support for footnotes.† X.org beg an with a set of manuals in troff format. Instead updating
their content, the project opted to re-encode them in Docbook and/or Doxygen.

The dysfunctional Unix documentation system has hindered progress in other ways, too. For exam-
ple, command-line shells cannot rely on documentation files to provide interactive help. The user cannot
type

$ ssh help

to get a reminder of the available options, or — heaven forfend — a form to facilitate making the choices.
The bare-bones experience at the bash prompt is in part the product of the lack of a unified, programmati-
cally accessible body of documentation.

† Footnotes! Dude! You can say other stuff that’s pertinent but not strictly necessary, without interrupting
the explication.

19 November 2020

-2-

The origins of our Tower of Babel are historical and psychological. There is a certain amount of Not
Invented Here, some issues with copyright and license, opinions on what is modern and what the future will
look like, and strong brew of technical arrogance.

Probably the tide cannot be held back. That ship, I’m often told, has already sailed. And surely one
audience reading one paper at one conference will not stem the tide, or unsail the ship, or whatever. But
perhaps if we chart the course we have been on, we can, slowly, steer the ship and sail toward a better desti-
nation, instead of straight to Terra Incognita, with no one at the helm.

History of Everything

The history of everything is re-invention. The beginning programmer re-invents simple tools and
ev entually discovers very few simple sui generis tools are better than those found in /usr/bin. After about
five years, though, the beginning programmer becomes an intermediate programmer, and there disaster
aw aits.

It is hard today to find any Unix subsystem or function that hasn’t been repeatedly re-invented, often
to little or no effect. lpd(8) gave way to CUPS. /etc/rc.conf gav e way to /etc/rc.d. init(8) led to systemd(8).
Naturally, there were reasons — perhaps even good reasons — to replace system ante with sytem post. But
the observable advancement, from the user’s point of view or by any objective measure, was close to nil.
Very few examples can be found where the functionality offered by the replacement could not have been
added to the replaced, with less dislocation and need to “upgrade”.

So it is with documentation. To inv ent a system for encoding and rendering documentation is not dif-
ficult. Neither are the problems inherent in any giv en system hard to see (although the obvious ones are
usually not the important ones). The goal seems equally simple, even if it prove harder to achieve than
articulate. So it is not surprising we have a succession of tools and systems all hoping to slay the dragon,
and make documentation safe in our time.

History of Documentation Systems

The halcyon days of documentation systems were the 1990s, just before Bill Gates discovered the
Internet. There was a brief and glorious struggle — well, not all that glorious, really. The dust settled just
about when the dotcom bubble burst, in 2000. Each team retreated to its corner, and a cold truce settled on
the world.

Perhaps the most widely used on a commercial scale was from IBM: the Standard General Markup
Language (SGML). It was SGML that invented what we now call semantic tags, and distinguished the
declared meaning from the rendered formatting style. SGML is still with us today. It’s still supported by
Jade, and still with us — in humbler form — in XML and HTML. Docbook began as an “SGML applica-
tion”, a standardized set of tags designed for technical documentation. Latterly, Docbook development has
favored XML, with its simplified schema-definition language.

The system developed by Bell Labs, troff, was as different as could be: a direct typesetter with no
imposed structure and no explicit machinery to enforce separation of semantics from style. Instead of dic-
tionaries of opaque tags, troff provided sets of macros that users were free to extend or ignore or abuse.
The wonderful, programmable flexibility was a feature to user and a bug to management: freedom for one
is to the other loss of control. It should be no surprise that large, top-down organizations such as IBM and
the military preferred SGML to troff.

A third rival in the fray came from what might be called an organization: the Free Software Founda-
tion. Richard Stallman developed Te xinfo, and the GNU project still considers that the One True Format for
documentation. Because it is designed only for technical manuals, it bears none of the overhead of SGML
and has none of the flexibility of troff. †

Not to be overlooked are language-specific documentation systems and their emulators: java and
javadoc, perl and perldoc, Python and pydoc, etc. And of course Doxygen, which might be viewed as
javadoc for C++.

† Texinfo can be used as a preprocessor for another system not discussed here in any detail: TEX. TEX was
developed not as a documentation system, but as a system for producing documents. It has never played much
of a role is Unix documentation except to generate printed matter from Texinfo.

19 November 2020

-3-

Owing to the popularity of JavaScript and GitHub, in recent years markdown has become popular.
Popular, but simplistic: no cross-references, no table of contents, no index. In the battle for semantic
markup, markdown has no dog: it’s pure formatting.

Finally, we should mention mandoc, which the BSD systems have generally adopted for the base sys-
tem to render man pages. mandoc exists for that exact purpose: not to replace troff, but to render man pages
without it by processing the man and mdoc troff macros.

Strengths of Documentation Systems

Let’s summarize the relative strengths of each system.

SGML → consistency
SGML divides the informational content from typesetting considerations. By presenting the author
only with opaque semantic tags, it reserves for the organization decisions about font and color and
layout.

troff → typesetting
With its macro facility, troff allows, but does not enforce, the use of semantic tags. The author has
complete control over every typesetting choice if so desired. troff is the most ambitious typesetter,
too: not only tables and footnotes, but mathematics, pictures, and graphs.

Texinfo → accessibility
Alone among these system, Texinfo includes a reader (two, if you count emacs). Not only does it
support an index, but the user can access an indexed item from the command line or by typing I in
the viewer.

Doxygen → convenience
The source-code documentation systems all share the philosophy that some documenttion is better
than no documentation, and that programmers are more apt to update the documentation if it’s staring
them in the face when they change the code.†

markdown → simplicity
Nothing (almost) to learn, easy to read. Get something up in a hurry, and don’t worry about consis-
tency or the printed page.

mandoc → just man pages
mandoc has only one objective: to render man pages. Well, two objectives: also to render the man
page using software with a BSD license.

Feature Set Comparison

System VT-100 HTML PDF Semantic tags Indexed Hyperlinks
SGML no ✓ ✓ ✓ no ✓

groff man ✓ meh ✓ ✓ no ✓

groff mdoc ✓ meh ✓ ✓ no ✓

Te xinfo ✓ ✓ ✓ meh ✓ ✓

Doxygen no ✓ ? meh ✓ ✓

markdown meh ✓ no no no ✓

mandoc ✓ ✓ ✓ ✓ no ✓

Myths of Documentation Systems

Documentation is easy, or should be. To write documentation is to set aside telling the computer
what to do, and to take up the reader’s point of view: What does it do, and how do I use it? No system can
make that transition easy; it has to be accepted, undertaken, and practiced. It’s not for everyone, and it’s

† The evidence in support of that proposition is nil or negative. Lousy documentation based on such system
abounds, and excellent results are rare indeed. Observe that Unix itself was documented with separate docu-
mentation files, the method still used by the BSDs today, to generally positive reviews. If lazy programmers are
reluctant to write documentation, making the effort less onerous, on the evidence, does nothing for the quality of
the results.

19 November 2020

-4-

definitely not for the programmer while programming.

Write once, render everywhere. The promise of many systems is that, if the author will only write
the fine manual, the system will repay the effort by rendering it in every desired format and venue. Your
Name In Lights. The reality is different:

• The quality of the rendered output is uneven. No system today is equally good at pro-
ducing PDF and HTML output, and rendering usefully in a terminal window.

• The properties of each medium are different, and affect how the content is best pre-
sented. Book publishers give consideration to how text and figures relate on the printed
page. Sidebars are helpful, except in a terminal. Floating menus can work wonders in
HTML, not so much on the printed page.

Proof: rare is the document that renders equally well in two formats out of three. Nonexistent is the
one that does so without much thought and effort on the part of the author. It wasn’t written once; it was
written many times, carefully.

In planning a better documentation system, there is no media-neutral solution. Without considered
effort, every document will be inherently biased to work best in one medium or another. It’s useful to
understand that your preferred medium influences what you think is the “best” system.

Indexing is automatic. Good documentation is curated, and no system indexes keywords automati-
cally. Sure, the whole text can be indexed indiscriminately. But the job of deciding where a term is defined
and discussed remains, in 2018, the job of an editor.‡

The web is the future. The web is not your machine; it’s not even you virtual machine in the cloud.
The most reliable documentation for the system you are using is that which is included. Furthermore,
index- and keyword-searches are not supported by the general-purpose web browser, nor by standard
HTML.

troff is obsolete. troff refuses to go gentle into that good night. The “blame” is usually placed on
the existing man pages: who will rewrite them in the new, “modern” system? But the fact is that new man
pages are written every day, not least because troff is so darn functional.

Myths of Troff

troff is dead. There are three active troff projects: GNU, Heirloom, and neatroff. That excludes the
active projects trying to make it obsolete.

troff is inferior to TEX. Science students are generally advised to learn TEX, and told it’s the cat’s
pajamas for preparing manuscripts. And it might be; Knuth developed TEX in part because of his dismay at
the quality of the output of mathematical notation in troff. On the other hand, modern TEX systems are very
complex, 100 times the size of any troff implementation, and the technical advantage of TEX is easy to
overstate. I challenge the reader of the present document, for example, to find a paragraph that would be
better rendered by the paragraph-at-once algorithm instead of the line-at-a-time one that was used.

As an author, troff is ugly and hard to use.

Compared to what? Pound for pound, troff is easier to use and more capable than anything else.

The best SGML systems are enormously complicated. And expensive. They support great catalogs
of tags and transformations, plus a rich UI to let the user connect the abstract tagging sytem to a concrete
concurrent rendering.

Nothing resembling those SGML systems is available as free software. The UI presented by Doc-
Book is, for the most part, the same one that is presented by C++: a text editor, a command-line utility to
“compile” it, and a web browser or PDF viewer. No Docbook author revels in the sea of tags that over-
whelm the content.

‡ An editor with a nose, not an init file.

19 November 2020

-5-

<table id="tab.Protocol.by.Product">

<title>Versions of the <acronym>TDS</> Protocol, by Product</title>

<tgroup cols="3">

<thead>

<row> <entry>Product</entry>

<entry>TDS Version</entry>

<entry>Comment</entry>

</row>

</thead>

<tbody>

<row>

<entry>Sybase before System 10,

Microsoft SQL Server 6.x</entry>

<entry>4.2</entry>

<entry>Still works with all products,

subject to its limitations. </entry>

troff was and is the only typesetting language designed expressly for the user to input “by hand”,
without the aid of a sophisticated UI and tag dictionary. In constrast to the verbosity of SGML, troff is
minimalist. The same table fragment above is entered in troff as:

.ds TDS \f[CW]TDS\f[]

.SH

Versions of the *[TDS] Protocol, by Product

.PP

.TS

LB LB LB

L L L .

Product TDS Version Comment

_

Sybase before System 10, Microsoft SQL Server 6.x\

4.2\

Still works with all products, subject to its limitations.

.TE

.NL

Half the typing: 229 characters versus 586 for Docbook. And, by minimizing the markup, it’s easier to see
the forest for the trees.

Without doubt, the idiosyncrasies of troff are off-putting. ’Twas ever thus.

In spite of some obvious deficiencies — a rebarbative input syntax, mysterious and
undocumented properties in some areas, and a voracious appetite for computer
resources (especially when used with macro packages and preprocessors like EQN and
TBL) — TROFF has been the basis of document preparation at Bell Labs for some years,
and is likely to remain so for years to come.
— Brian Kernighan, A Typesetter-independent TROFF

The new troff user is immediately affronted by the “rebarbative syntax”. Like parenthesis in Lisp and
whitespace in Python, though, the leading dots and two-letter commands† pose no real problem, and
quickly become “just the way it is”. I hav e yet to meet the user who spent several hours with troff and then
swore off it because of its offensive syntax.

The Trouble with Troff

The trouble with troff is in the experience.

† technically, requests, or macros.

19 November 2020

-6-

Development of the troff UI ceased, along with just about the whole Unix UI, 20 years ago. The last
specialized man page viewer was xman, a toy from the MIT Athena project. Computing power has
increased by 3 orders of magnitude, and all we got was a really fast less(1).

Lack of a convenient viewer might be the central reason for documentation fragmentation.

Appearance
The author does not breathe who does not care how the prose is rendered on the page. If appealing
output didn’t matter, you’d be reading this page in a monospace font on greenbar paper, and the Zen
CSS Garden wouldn’t exist.

Convenience
While typing man foo is surely the fastest way to get to a document, it’s far from the best way to
peruse documentation. Try man X or man git, for example. Hyperlinks have their place and purpose,
and their state of the art today is undeniably in HTML.

But, really, is that enough? Can we ask no more of our documentation system than that new pages
come up when we click on the blue underlined text?

The Ideal Documentation System

Man pages look the way they do, and are used they way they are, because the available software
mostly emulates the state of the art circa 1976.

Close your eyes now and imagine a documentation system that does what you want. What does it
look like? A bit like an e-book reader, but smarter, and with a keyboard.

Fast It finds the page quickly, scrolls quickly, and searches quickly.

Accurate Index searches locate definitions and discussions, not incidental uses of the same word.

Convenient Hyperlinks to internal and external references can be followed at a keystroke or mouse click.
See the description of shopt below under SHELL BUILTIN COMMANDS isn’t just a sugges-
tion; it’s an affordance. The table of contents let you jump to the relevant section. Index
searches can jump to the referenced use, or display a list of context sentences that are them-
selves links into the body of the document. The SEE ALSO section can be searched concur-
rently with the main document.

Attractive The full faith and credit of the GUI is behind it. Colors and font sizes are configurable. Gone
are monospace fonts, except where they add information or make the text easier to read.

Flexible There are different ways and needs to read a document. Sometimes it’s the first time. Some-
times it’s time to dig in and really understand. Sometimes it’s a quick lookup of an option or
keyword.

Consistent Consistent document structure, consistent document placement, consistent document format,
consistent document rendering. The more consistent is the documentation, the easier it is to
access, to understand, and to use.

Graphical For those times when a picture or a diagram or an equation helps tell the story.

Integrated If documenting a command, where is the executable, and what does it say about its version?
If a function, where is the object code, and where is the supporting source?

Strengths of Troff

GNU troff (groff) already provides all the artifacts needed by the ideal documentation system. It can
output plain text, HTML, Postscript, and PDF directly. There are macro sets for books, reports, manuals,
and presentations. It supports HTML and PDF hyperlinks.

Man pages, while they vary in quality, already do contain all the information needed by the ideal doc-
umentation system. The syntax — whether command-line options or argument functions — is fully
described.

Much of the power of troff currently goes unexploited. Unlike any other freely available documenta-
tion system, troff has built-in support for mathematics and graphics. It’s also quite trivial to construct tables

19 November 2020

-7-

automatically from database queries, even on the fly.

Arresting Observation

In 30 years, no better system has been invented. Equivalent systems, arguably, perhaps,
depending on how one rates the missing and added features. But no system completely sub-
sumes the feature set, let alone improves on it.

That fact alone is a testament to the durability and utility and functionality of troff.

Better Documentation Through Troff

A better viewer would motivate better man pages.† As things stand, any discussion of “better” tags is
academic: while it may be clearer, in some sense, to say that a bit of text is an argument or a function name,
knowing the system will underline it or boldface it, it’s also one more level of indirection to learn and use.
The user sees no difference. If, on the other hand, the system somehow used the fact that the name is an
option name and not merely emphasized text, the author now has a concrete reason to provide the informa-
tion.

Other systems could be brought into the fold. Programmatic conversion of Texinfo, for example, is
already supported and could doubtless be improved. The content is there, even if the approach is inconsis-
tent.

The language-specific systems, such as javadoc, can certainly be converted to troff man pages with a
certain amount of patience and willingness to make assumptions. Continuous, automatic conversion is
probably not feasible; a one-time conversion with touch-ups is.

Arbitrary formats usually in fact have sufficient information to make a creditable conversion to man
page format. Your humble author produced man pages from Subversion help text. Someone else converted
SQLite’s web documentation to man pages. The standard structure of a man page lends itself to program-
matic generation if a little boilerplate is tolerable.

My Kingdom for a Viewer

The first step in correcting any problem is recognizing it. No one who has examined the state of
Unix documentation would defend it as satisfactory, much less ideal. For that last 15 years, the answer to
the way forward has been hands in pockets while whistling a happy tune.

Let’s not keep our light under a basket anymore.

Despite being the best we have, such as it is, troff has untapped capacity. That capacity goes unreal-
ized because it is, literally, unrealized: it almost never appears on screen. To the extent that troff’s typeset-
ting capacity is revealed in PDF form, it’s also trapped there, in a system that is slow to load and render, ill-
suited for searching, and generally not integrated into the rest of the system.

Put man(1), info(1), xman(1), xpdf(1), and your favorite web browser into a blender. Render man
pages in proportional font directly, not through Postscript or PDF, to sav e time. Assign keys to jump to sec-
tion headers. Automatically search the SEE ALSO section. Make it easy and enjoyable to follow links,
forward and back again.

In fact, today’s browser has the functionality to interpret and render troff documents. No need for
HTML or PDF.

Build it, and they will come. A better viewer will engender better documentation, and a better user
experience. One day, perhaps they will say:

I switched to your system because at least I could understand it.

† The mdoc macro package has much better support for semantic tags (and therefore more meaningful tags)
than the “standard” man macros that GNU and Linux half-heartedly recommend.

19 November 2020

