
FOSDEM 2025

Cobol is the Original Safe Language

James K. Lowden

Cobolworx

Symas Corporation

Br ussels, Saturday, 1 Febr uary 2023

6:55pm UTC in Room K.3.201

Why is Safety the New Shiny?

What Means “Safe”?

Safety via Compiler

• Runtime, Compile-time

Cobol Vs. C++

Worse is Not Better

James K. Lowden 1 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

Why is Safety the New Shiny

The Fierce Urgency of Security

Old Story, True Stor y

Cyberattacks have focussed nontechnical minds

Secur ity includes

• Physical security

• People (Kim Philby)

• Policy

• Enforcement

• Software

Language Safety ⇒ Secur ity

James K. Lowden 2 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

What Means “Safe”?

No Language Is Safe

$ crash() {
mkdir crash;
cd crash && crash;

}
$ cd /tmp/
$ crash
Segmentation fault (core dumped)

Any language can exhaust resources

Any language can loop infinitely

Inter preted languages defer errors to run time

James K. Lowden 3 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

What Means “Safe”?

Compilers Could Help

#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

void crash() {
static const char name[][8] = { "crash" };
mkdir(name[16], 0777);
chdir(name[16]);
crash();

}

But often don’t (neither gcc nor clang)

scan-build clang -c recurse.c
scan-build: Using ’/usr/lib/llvm-14/bin/clang’ for static analysis
scan-build: Analysis run complete.
scan-build: No bugs found.

James K. Lowden 4 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

What Means “Safe”?

Runtime Errors, Apparently

The immediate problem “is” that it’s Too Easy By Default™ to write security
and safety vulnerabilities in C++ that would have been caught by str icter
enforcement of known rules for type, bounds, initialization, and lifetime
language safety.

— Herb Sutter https://herbsutter.com/2024/03/11/safety-in-context/

MITRE 2023 Common Weakness Enumeration

Rank ID Name Score

1 CWE-787 Out-of-bounds Wr ite 63.72
4 CWE-416 Use After Free 16.71
7 CWE-125 Out-of-bounds Read 14.60

12 CWE-476 NULL Pointer Dereference 6.59

James K. Lowden 5 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

What Means “Safe”?

COBOL Defines Runtime Exception Policy

IBM COBOL EF (1973) had neither

• dynamic memory

• pointers

ISO COBOL 2023 Defines Exception Conditions

• Out-of-bounds Write, Out-of-bounds Read

☞ EC-BOUND, 7 conditions

☞ EC-RANGE, 7 conditions

• Use After Free: Impossible

☞ COBOL FREE sets pointer to NULL

☞ free before allocate: EC-STORAGE-NOT-ALLOC

• NULL Pointer Dereference

☞ allocation failure: EC-STORAGE-NOT-AVAIL

☞ dereference: EC-DATA-PTR-NULL

James K. Lowden 6 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

Runtime Exceptions

COBOL Exception Conditions

120 Exception Conditions in 25 categories

• Fatal and non-fatal

• Raised during execution of a statement

• Include I/O, memor y, execution, and computation

☞ EC-BOUND-REF-MOD, substr ing

☞ EC-DATA-CONVERSION

☞ EC-DATA-OVERFLOW, Exponent overflow dur ing MOVE

☞ EC-EXTERNAL-FILE-MISMATCH, wrong file type

☞ EC-FUNCTION-NOT-FOUND and EC-PROGRAM-NOT-FOUND, dynamic call

☞ EC-SIZE-TRUNCATION, Significant digits truncated in store

James K. Lowden 7 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

Runtime Exception Policy

COBOL DECLARATIVES

Each program may define Declaratives

• procedures to handle exception conditions

Handled specifically, or by categor y

Recovery from fatal Exception Condition possible with RESUME

COBOL Conditionals

Most statements have a “conditional for m” that defines logic

• to handle exception conditions the statement may raise, or

• to execute when no exception is raised, because

• RESUME continues at next statement

COBOL defines which exception conditions each statement can raise

Programmer relieved of enumerating exception conditions per statement

James K. Lowden 8 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

Compile-time Policy

Nail It Down

COBOL defines

• Variables, to exact byte size and precision

• Files by type and record type

• Semantics for

• Computation and Rounding: COMPUTE

• Memor y-to-memor y: MOVE

• MOVE converts between types

• File operations, including OPEN

• Character output, DISPLAY

No memset, memcpy, or stdio, or errno

James K. Lowden 9 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

Compile-time Policy

Rules for Data

RAII

• Each field has a size, and may define an initial value

• A field may have an enumerated valid domain †

• Default blanks for characters and zeroes for numbers.

Numer ic types may be

• native integer or floating point (of defined size)

• machine-independent integer or fixed-point

Examples
77 A06THREES-DS-03V03 PICTURE S999V999 VALUE 333.333.

77 A08TWOS-DS-02V06 PICTURE S99V9(6) VALUE 22.222222.

77 WRK-XN-00001 PICTURE X.

77 A10ONES-DS-10V00 PICTURE S9(10)

VALUE 1111111111.

† Unlike other obsolete features, it is intended that interest in this facility will be reevaluated during the next revision of standard COBOL

James K. Lowden 10 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

Compile-time Policy

Rules for Files

COBOL language (not librar y) defines I/O

Statements

• OPEN

• START (seek)

• READ

• WRITE

• DELETE (record)

• CLOSE

Invalid file operations disallowed by compiler

• Cannot use random access on sequential file

James K. Lowden 11 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

Networ k Policy

Rules for Communication

Communication is defined by a super ior system, e.g., CICS

COBOL application runs as loaded infer ior module

Each I/O operation is defined

• Appearance

• Size

• Str ucture

Networ k definition is static

• To add a phone, everyone must hang up

Networ k devices can respond only to what is sent

Permissions controlled by super ior

James K. Lowden 12 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

Module Policy

Macros, not librar ies

Preprocessors, not librar ies, add functionality to COBOL

EXEC CICS
make COBOL records from application UI for ms

EXEC SQL
make COBOL records from SQL rows

The whole application is under compiler control

James K. Lowden 13 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

A Safe Language

Safety by Definition

Because COBOL defines

• Size, initial value, and valid domain of every var iable

• Semantics for MOVE and COMPUTE

• Exact numer ic computation, including rounding

• Records for every I/O operation

• File

• Networ k

• File types

Therefore

• Many operations are disallowed by the compiler

• Many more runtime exceptions can be raised (and handled)

James K. Lowden 14 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

COBOL vs. C++

A scoreboard

Feature COBOL C++

RIAA by default Yes No
Field domains Yes No
Conversion semantics Yes No
Computation exceptions Yes No
File semantics Yes No
I/O record definitions Yes No
Declarative exception handling Yes No
Runtime Exceptions 120 10

James K. Lowden 15 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

COBOL is (Still) the Safest Language

A Checklist

✓ Memor y always defined

✓ Checked iterators

✓ Checked computation

✓ I/O always defined

✓ Centralized and per-statement exception handling

https://herbsutter.com/2024/03/11/safety-in-context/ 2024-03-11, Herb Sutter

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3274r0.pdf 2024-04-09, Bjarne Stroustrup

James K. Lowden 16 Symas Corporation <jklowden@cobolworx.com>

FOSDEM 2025

A Big Language is Safe Language

The compiler can’t check

what it does not see

COBOL defines the whole application

• System interface regulated by compiler
“Moder n” languages limit compiler’s role

• System interface regulated by programmer

• Function calls limit static analysis feasibility

Maybe the next modern language

• Needs to be less modern

James K. Lowden 17 Symas Corporation <jklowden@cobolworx.com>

